

Latest jet results from Tevatron

Andrea Messina

INFN Roma

On behalf of CDF & DO collaborations

XLI Rencontres de Moriond QCD and High Energy hadronic Interactions La Thuile - Italy, 18-24 March 2006

Jet Physics at 2TeV

Outline

Jet algorithms Low P_T QCD

This is only a selection of latest jet results from Tevatron!!!

 Correlation of particle inside a jet & Fragmentation

High PT QCD

- Inclusive jet cross section:
 - ✓ Midpoint (cone) and K_T central jets
 - \checkmark k_T forward jet
- Heavy flavour jets:
 - ✓ µ-tagged jet cross section
 - √ b-jet cross section

The experimental environment

√p-pbar collisions

 \sqrt{s} =1.96 TeV (RunI 1.8)

√36 bunches, 396 ns

√peak Lum≥10³² [cm⁻²s⁻¹]

√≈ 25 pb⁻¹/week

Andrea Messina

Infn Rome-CDF

Both detectors performing well

Analyses with 0.3-1.0 fb⁻¹

Jet algorithms

Jets are collimated sprays of hadrons originating from the hard scattering

Appropriate jet search algorithms are necessary to define/study hard physics and compare with theory

Different algorithms correspond to different observables and give different results!

K_{T}

Cluster particle/towers

Based on their relative p_T

Infrared and coll. safe

No merging/spitting

MidPoint (cone)

Cluster particle/towers

Based on their proximity
in the y- ϕ plane

Andrea Messina Infn Rome-CDF

Hadronic showers

Jet corrections

- must correct for detector resolution and efficiency
- must correct for pile-up interactions (on average 3.6 interactions @ 10³²cm⁻²s⁻¹)

- √ Hadron jets:
 - underlying event subtraction
 - remove fragmentation/hadronization effects
 - Monte Carlo model based
 - Need to be tuned on data!!!
 by using many different observables

- ✓ Parton jets:
 - Gluon radiation, energy loss
 - Monte Carlo model based

To compare with theory is important to have a good simulation of soft physics: Underlying event, hadronization, fragmentation

showers

- CDF: Underlying Event studies; Jet Shapes (Phys. Rev. D 71, 112002, 2005)
- DO: Dijet azimuthal decorrelations (Phys. Rev. Lett. 94, 221801, 2005)

Two particle momentum correlation & hadronization

Dijet events 60 GeV< $M_{\rm jj}$ <600 GeV All particle pairs in cone 0.5 around the jet axis

 $\begin{array}{l} \xi = Ln(E_{jet}/P_{particle}), \; \Delta \xi = \xi - \xi^{At \; Max} \\ Q = E_{jet}x\theta_{Cone}; \; Q_{eff} = \; parton \; shower \\ cutoff \; in \; the \; theory \end{array}$

 $C(\xi_1, \xi_2) = \frac{\left(\frac{dn}{d\xi_1 d\xi_2}\right)}{\left(\frac{dn}{d\xi_1}\right)\left(\frac{dn}{d\xi_2}\right)} = c_0(E_{jet}) + c_1(E_{jet}) \bullet (\Delta \xi_1 + \Delta \xi_2) + c_2(E_{jet}) \bullet (\Delta \xi_1 - \Delta \xi_2)^2$ cluon jet

gluon jet quark jet

Q_{eff}≈150MeV

Local parton-hadron duality: correlation survives hadronization

-1.5 -1 -0.5 0 0.5

Andrea Messina Infn Rome-CDF

Inclusive Jet Cross Section

- ullet Higher σ with respect to Run I
- Increased p_T range
- Probes physics at small distances ≈10⁻¹⁹m
- ullet Test pQCD over more than 8 decades in σ
- Sensitive to PDF (gluon @ high-x)

Forward jets measurements: distinguish between new physics and PDF if any excess in the central region.

Inclusive Jet Cross Section-CDF (MidPoint algorithm R=0.7)

Central jets: 0.1<|yjet|< 0.7

Sensitive to UE+Hadronisation

effects for P₋<100 GeV/c

- √ Systematic dominated by Jet Energy Scale uncertainties (2-3%)
- √ NLO uncertainty due to high x gluon PDF

Andrea Messina

XLI Rencontres De Moriond - QCD and high energy hadronic interactions - La Thuile March 2006

0.9

8.0

500

P_T (GeV/c)

CDF Run II Preliminary

Uncertainty

Inclusive Jet Cross Section-DO

(MidPoint algorithm R=0.7)

2 regions in rapidity explored |y^{jet}|< 0.4</p>

0.4 < |yjet | < 0.8

 $L = 380 \text{ pb}^{-1}$

Jet energy scale uncertainty

→ dominant error

Good agreement with NLO prediction

Andrea Messina Infn Rome-CDF

Inclusive Jet Cross Section-CDF

 $L = 1 \text{ fb}^{-1}$ (K_T algorithm D=0.7)

Central jets: 0.1<|yjet|< 0.7 CDF Run II Preliminary

K_T D=0.7 0.1<|y^{JET}|<0.7

Systematic uncertainties

PDF uncertainties

K_⊤ works well in hadronic collisions

Good agreement with NLO CTEQ6.1M

Forward Jet Cross Section-CDF (K_T algorithm D=0.7)

$$L = 1 \text{ fb}^{-1}$$

Five regions in jet rapidity explored (D=0.7):

- •|yjet|<0.1
- •0.1<|y^{jet}|<0.7
- •0.7<|yjet|<1.1
- •1.1<|y^{jet}|<1.6
- •1.6<|yjet|<2.1

Good agreement with NLO pQCD for jets up to |Y|<2.1

µ-Tagged jets

- \bullet jet containing heavy flavour often contain μ
 - \Rightarrow search for μ enhances heavy flavour content

µ-Tagged jets cross section

 $L = 300 \text{ pb}^{-1}$

- MidPoint algorithm cone R=0.5
- |y^{jet}| < 0.5
- require μ in R=0.5, P_T^{μ} >5GeV/c
- correct for light flavours

Data/Pyhtia ≈ 1.3 (flat)

🔋 Inclusive bjet cross section 🔀

Reconstruct (silicon detector) secondary vertex from B

hadron decays (b-tagging)

CDF RunII Preliminary

- Beauty production -> Test of pQCD
- MidPoint jets: R = 0.7, $|y|^{jet} < 0.7$
- Shape of secondary vertex mass used to extract b-purity from data

$$L = 300 \text{ pb}^{-1}$$

- More than 6 decades covered Systematic dominated by Jet Energy Scale and b-purity uncertainties
 - Uncertainties on NLO dominated by μ_p/μ_F scales

Summary

- ✓ Tevatron delivered More than 1.6 fb⁻¹
 - ▶ Both CDF and DO are performing well
- ✓ Rich QCD physics program at Tevatron. Latest results correspond to 1fb⁻¹ data
 - ♦ Good progress in understanding soft p_T physics: underlying event, hadronization and particle correlation
 - ♦ Theory (CTEQ61M) agrees with MidPoint and K_T jet cross section over more than 8 order of magnitude
 - ♦ K_T jet algorithm works fine in hadronic collisions
 - NLO prediction consistent with b-jet production measurements

Backup Slides

Inclusive jet K_T

NEW L = 1 fb^{-1}

Good agreement with Theory @ NLO!!!

K_T algorithm works in hadron-hadron collisions!!!

Andrea Messina Infn Rome-CDF

High P_T b-jet

Displaced tracks inside jet used to reconstruct secondary vertex from B hadron decays (b-tagging)

Extract fraction of b-tagged jets from data:

→ use shape of secondary vertex mass

W+jets results

Differential xsec wrt jet E_T in each of the 4 W+ n jet inclusive samples

Integrated xsec wrt jet E_T in each of the 4 W+ n jet inclusive samples

Caveat: this is not a full theory to data comparison. MC have been normalized to data inclusive cross section in each jet multiplicity sample!

W+jets results

Differential xsec wrt di-jet invariant mass in the W+ 2 jet inclusive samples

Differential xsec wrt di-jet ΔR in the W+ 2 jet inclusive samples

Caveat: this is not a full theory to data comparison. MC have been normalized to data inclusive cross section in each jet multiplicity sample!